
Introduction To Programming
with MPI

Luke Lonergan
High Performance Technologies, Inc.

What is MPI ?

Message-Passing Interface (MPI)
MPI is a communication library for parallel computers and
workstation clusters.
MPI can be called from C or Fortran programs
MPI is a standard for writing library routines:
http//www.mcs.anl.gov/Projects/mpi
 Several implementations are available:
 - MPICH from Argonne National Lab & MS State Univ

 - SGI MPI 2.0 from Silicon Graphics Inc
 - CHIMP from Edinburgh Parallel Computing Center

 - Others

Message Passing Interface (MPI)

MPI contains over 125 routines

Many efficient parallel programs can be written with a basic set of
just six functions.

 Large number of routines are not necessarily a measure of the
complexity.

Basic MPI Functions

MPI_INIT Initialize MPI Execution Environment

MPI_COMM_SIZE Return the number of MPI processes
MPI_COMM_RANK Return the rank (id) of the caller

MPI_SEND Send a message
MPI_RECV Receive a message

MPI_FINALIZE Terminate MPI Execution Environment

MPI_INIT and MPI_FINALIZE

MPI_INIT(ierror)
 must be called in every MPI program
 must be called before any other MPI routine
 must be called only once in an MPI program

MPI_FINALIZE(ierror)
 must be called at the end of the MPI program
 should be the last MPI routine called
 in every MPI program

Exercise 1

 Objective: To Illustrate the Use of MPI_INIT(ierr) and
MPI_FINALIZE(ierr)

cd mpi_0/exercise1

edit the file hello_1.f

5 minutes

Exercise 1 : Illustrate the Use of
MPI_INIT(ierr) and MPI_FINALIZE(ierr)

 program hello_1
 implicit none

 include “mpif.h”

 << initialize MPI >>

 print *, ‘Hello World’

 << terminate MPI >>

 end

3 minutes

Exercise 1 (continued)

 program hello_1
 implicit none
 include “mpif.h”
 integer ierr
 call MPI_INIT(ierr)

 print *, ‘Hello World’
 call MPI_FINALIZE(ierr)
 end

Note: The MPI header file ‘mpif.h’ must be included in all MPI programs.

Exercise 1 (continued)

Compile your program with mpif77
 (e.g. mpif77 hello_1.f -o hello_1.x)

run the program with 4 processors:
 mpirun -np 4 hello_1.x

Note: mpif77 and mpirun are not part of the standard - but are
specific to the MPICH implementation

Exercise 1 (continued)

 The Output :

 Hello World
 Hello World
 Hello World
 Hello World

An Observation

 All non-MPI calls are local
 - recall the print statement in the exercise

 - print *, ‘Hello World’
 - each process executed this statement ……..

Communicator

A communicator defines a collection or group of processes.
Most of the MPI calls require a communicator as an argument
MPI processes can only communicate if they share a
communicator
In general it is used so that processes can be divided into groups
for algorithmic purposes.

MPI_COMM_WORLD

MPI_INIT sets up a predefined a communicator called
MPI_COMM_WORLD which includes all the processes
of the MPI application

MPI_COMM_WORLD

SIZE OF THE COMMUNICATOR

MPI_COMM_SIZE returns the number of MPI processes

 integer size, ierr
 call MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr)

RANK OR ID OF A PROCESS

Rank (or ID) : a unique integer assigned to each process
 ranks are contiguous integers in the range [0, nprocs-1]
 used to specify the source and destination of the messages
 used to control program execution

integer rank, ierr
call MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr)

Exercise 2

 Objective: Illustrate the use of MPI_COMM_SIZE and
MPI_COMM_WORLD

cd mpi_0/exercise2

edit the file “hello_2.f”

6 minutes

Exercise 2 (To Illustrate the Use of
MPI_COMM_SIZE(communicator,size, ierr) and
MPI_COMM_RANK(communicator,size,ierr)

 program hello_2
 implicit none
 include `mpif.h`
 integer size, rank, ierr

 call MPI_INIT(ierr)
 << Insert the call to find nprocs>>
 << Insert the call to find the rank >>
 print *, ‘Hello, from process # ‘, rank, ’ of ‘, size

 call MPI_FINALIZE(ierr)
 end

3minutes

Exercise 2 (continued)

 program hello_2
 implicit none
 include `mpif.h`
 integer nprocs, rank, ierr

 call MPI_INIT(ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
 print *, ‘Hello, from process # ‘, rank, ’ of ‘, size
 call MPI_FINALIZE(ierr)
 end

Exercise 2 (continued)

Compile and run with 4 processors 3 minutes

Does the output seems out of order ? Were you expecting one
process to finish before another ?

Repeat running the executable a few times

Welcome to the world of message-passing programming - do not
assume that there is a particular order of events unless you forced it
do so.

Where will the output go ?

Can all nodes read and write ? Will my output file will end up
as separate files on different disks ?

Current implementations of MPI dodges the complex issue of
I/O. - It is an extremely system dependent issue.

We will discuss the current state of MPI I/O in a separate
lecture later in the course.

Point-to-Point Vs Collective
Communication
Point-to-Point Communication
 - most basic form of communication
 - involves exactly two processes
 - one process sends the message to another

Collective Communication
 - involves a whole group of processes at one time
 - built by using point-to-point routines

Point-to-Point Communication

Standard point-to-point communication involves:
 - MPI_SEND call from the source process
 - MPI_RECV call from the destination process

Sending process “pushes” the message out to other processes
 a process cannot go out and “fetch” the message but can
Only receive it if it has already been sent

MPI_SEND

 call MPI_SEND(buffer, count, type, dest, tag, comm, ierr)

Address of
send buffer

Datatype of send
buffer elements

Message tag

 integer ≥ 0

Error
code
integer

Number of
elements to send
integer ≥ 0

Process id (rank) of
destination process
integer ≥ 0

communicator

MPI_RECV

 call MPI_RECV(buffer, count, type, src tag, comm, status, ierr)

Address of
receive buffer

Datatype of receive
buffer elements

Message tag

 integer ≥ 0

Error
code
integer

Number of
elements to receive
integer ≥ 0

Process id (rank) of
source process
integer ≥ 0

communicator
Status
array
integer

MPI Fortran Datatypes

 MPI Datatype f77 Datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER

Note: In general datatypes must match in the send and recv calls
 (datatype MPI_BYTE is an exception)

Message Tags

Arbitrary integer assigned by the programmer to uniquely
identify a message.

Send and Receive operations should match message tags

MPI guarantees that integers in the range [0-32767] can be
used as tags - most implementations allow much larger values

Status Objects

Indicates source of the message and tag of the message.

An integer array of size MPI_STATUS_SIZE:
 integer status(MPI_STATUS_SIZE)

status (MPI_SOURCE) = rank of source processor

status (MPI_TAG) = message tag

MPI permits the use of wildcards MPI_ANY_TAG
 and MPI_ANY_SOURCE in recv calls

MPI_SEND and MPI_RECV (Examples)

Example : Send first 100 elements of the one dimensional array P of
type real to processor 3 in the communicator
MPI_COMM_WORLD: use tag = 9999

call MPI_SEND(P(1), 100, MPI_REAL, 3, 9999, MPI_COMM_WORLD, ierr)

Example: Receive an integer variable tagged 12 from process 0 in
MPI_COMM_WORLD and store it in Q

call MPI_RECV(Q,1, MPI_INTEGER, 0,12, MPI_COMM_WORLD, stat, ierr)

Blocking Communication

The standard send and receive operations in MPI are
“blocking type”

Blocking send will be completed only after message either
successfully sent or safely copied to system buffer

Blocking receive will be completed after the data is safely
stored in the receive buffer

Non-blocking Communication

A communication routine is non-blocking if the call returns
immediately

It is not safe to modify or use data soon after a non-blocking
call. The programmer must first insure that buffer space is
free

Used for overlapping computation with communication

Exercise 3: rank 1 sends a message to
rank 0 which receives and prints it

Objective: Illustrate the use of MPI_SEND and MPI_RECV

cd mpi_0/exercise3

edit the file ping.f

8 minutes

Exercise 3: rank 1 sends a message to
rank 0 which receives and prints it.
 program ping
 implicit none
 include `mpif.h`
 integer size, rank, ierr, stat(MPI_STATUS_SIZE)
 real msg

 call MPI_INIT(ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 if(rank . eq. 1)then
 msg = rank + 1.23456789
 << INSERT A CALL TO SEND msg TO rank 0 >>
 else
 << INSERT A CALL TO RECEIVE msg FROM rank 1

 Print *, ‘Received the value ‘, msg, ‘ from Process # ‘, stat (MPI_SOURCE)
 endif

 call MPI_FINALIZE(ierr)
 end

5 minutes

MPI_SEND and MPI_RECV

call MPI_SEND(buffer, count, type, dest, tag, comm, ierr)

call MPI_RECV(buffer, count, type, src tag, comm, status, ierr)

Exercise 3: rank 1 sends a message to
rank 0 which receives and prints it.

 if(rank . eq. 1)then
 msg = rank + 1.23456789

 call MPI_SEND(msg,1,MPI_REAL,0,999,MPI_COMM_WORLD,ierr)
 else
 call MPI_RECV(msg,1,MPI_REAL,1,999,MPI_COMM_WORLD,stat,ierr)

5 minutes

Exercise 3: rank 1 sends a message to rank 0
which receives it and prints it

Compile and run the executable with np = 2

Try running the code with np > 2

What happens and Why ?

3 minutes

Exercise 3: rank 1 sends a message to rank 0
which receives it and prints it

if(rank . eq. 1)then
 msg = rank + 1.23456789

 call MPI_SEND(msg,1,MPI_REAL,0,999,MPI_COMM_WORLD,ierr)
 else
 call MPI_RECV(msg,1,MPI_REAL,1,999,MPI_COMM_WORLD,stat,ierr)
Additional Exercise: Modify your code so that it works with np > 2
(i.e all processors send messages to rank 0 which receives and prints
them)

Exercise 4: Two processors send the value of
their ranks to each other (Step 1)

 cd mpi_0/exercise4/step1

edit/view the file ping_pong.f

5 minutes

Exercise 4: Two processors send the
value of their ranks to each other
(Step1)
if(rank . eq. 1)then

 call MPI_SEND(rank,1,MPI_INTEGER,0,999,MPI_COMM_WORLD,ierr)

 else

 call MPI_RECV(msg,1,MPI_INTEGER,1,999,MPI_COMM_WORLD,
 status,ierr)

 print *, ‘process ‘, rank,’ received ‘, msg, ‘ from process ‘,
 status(MPI_SOURCE)
endif

3 minutes

Exercise 4: Two processors send the value
of their ranks to each other (Step 2)

 cd mpi_0/exercise4/step2

 edit the file ping_pong.f

6 minutes

Exercise 4: Two processors send the value
of their ranks to each other (Step 2)

if(rank . eq. 1)then
 call MPI_SEND(rank,1,MPI_INTEGER,0,999,MPI_COMM_WORLD,ierr)
 << INSERT a call to receive msg from rank 0 >>
 print *, ‘process ‘, rank,’ received ‘, msg, ‘ from process ‘,
 status(MPI_SOURCE)else
 call MPI_RECV(msg,1,MPI_INTEGER,1,999,MPI_COMM_WORLD,
 status,ierr)

 << INSERT a call to send value of my rank to rank 1 >>

 print *, ‘process ‘, rank,’ received ‘, msg, ‘ from process ‘,
 status(MPI_SOURCE)endif

Exercise 4: Two processors send the value
of their ranks to each other (Step 2)

if(rank . eq. 1)then
 call MPI_SEND(rank,1,MPI_INTEGER,0,999,MPI_COMM_WORLD,ierr)
 call MPI_RECV(msg,1,MPI_INTEGER,0,998,MPI_COMM_WORLD, status, ierr)
 print *, ‘process ‘, rank,’ received ‘, msg, ‘ from process ‘,
 status(MPI_SOURCE)else
 call MPI_RECV(msg,1,MPI_INTEGER,1,999,MPI_COMM_WORLD,
 status,ierr)

 call MPI_SEND(rank,1,MPI_INTEGER,1,998,MPI_COMM_WORLD,ierr)
 print *, ‘process ‘, rank,’ received ‘, msg, ‘ from process ‘,
 status(MPI_SOURCE)endif

Exercise 4: Two processors send the value
of their ranks to each other (Step 2)

Compile and run the executable with np = 2

Additional Exercise: Modify the code so that processors
repeatedly send the message back and forth 10 times.

2 minutes

Exercise 5 : Example of deadlock

cd mpi_0/exercise5

edit/view the file lock.f

compile and run the code gradually increasing the message size

What can you do to prevent the deadlock ? Modify the code to
accomplish this

Exercise 5 : Example of deadlock

cd mpi_0/exercise5

edit/view the file lock.f

If (rank .eq. 1)

 call MPI_SEND(dummy1 TO rank 0)
 call MPI_RECV(dummy2 FROM rank 0)

else

 call MPI_SEND(dummy2 to rank 1)
 call MPI_RECV(dummy1 from rank1)

Exercise 5 : Example of deadlock

Compile and run the code np = 2
Gradually increase the message size and run the code
What can yo do to avoid such deadlock ?

if(rank . eq. 1)then

 call MPI_SEND(dummy1 TO rank 0)
 call MPI_RECV(dummy2 FROM rank 0)

else

 call MPI_RECV(dummy1 from rank1)
 call MPI_SEND(dummy2 to rank 1)

Exercise 6

Write a program which sends a message (say their rank)
around a ring of processors.

(i.e rank 0 sends 0 to rank 1, rank 1 sends 1 to rank 2, rank 2
sends 2 to rank 3 ….. And finally rank (size-1) sends (size-1)
to rank 0.)

Exercise 6:

Each process sends a message to one neighbor and receives a
different message from the other neighbor

Exercise 6: Define the Neighbors

 left = rank + 1
 if(left .gt. size-1) left = 0
 right = rank - 1
 if(right .lt. 0)right = size-1

Exercise 6:

 call MPI_SEND(my rank to “right”)

call MPI_RECV(message from “left”)

Exercise 6: One Solution

 If (rank .eq. 0)
call MPI_SEND(my rank to “right”)
call MPI_RECV(message from “left”)
else
call MPI_RECV(message from “left”)
call MPI_SEND(my rank to “right”)

Exercise 6

cd mpi_0/exercise6

Modify the code as indicated

compile and run the code with np = 4

Exercise 7: A Collective Communication
Routine

MPI_ALLREDUCE collects the local values, reduces to a
global value through MPI_defined reduction operation and
returns the global value to all the processors.

 MPI_ALLREDUCE (local value, global value,count,
MPI_type, MPI_reduction operator, communicator, ierr)

Exercise 7: A Collective Communication
Routine

cd mpi_0/exercise7

 edit/view the file ringsum.f

compile and run the code with np = 4

